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We study polarization conversion in the diffraction of light at the periodically corrugated boundary between
an isotropic medium and a uniaxial crystal. To do so, we extend a rigorous method originally developed for
diffraction gratings made of isotropic materials to include the case of anisotropic media. The theoretical
formalism relies upon the use of easy coordinate transformations that map the periodic interface onto a plane.
We consider a general configuration in which the incident beam is associated to waves coming either from the
isotropic or from the uniaxial side, with any orientation with respect to the grooves of the grating for the plane
of incidence~conical diffraction! and for the optical axis of the crystal. The analysis involves no restrictions on
the surface relief profile. We apply the method to study conversion between polarization states upon reflection
in two situations:~i! incidences from an isotropic, lossless dielectric onto a crystal near total reflection and~ii !
from a crystal onto a metal near the resonant excitation of surface plasmons. Good results have been obtained
for a groove height-to-period ratio up to 1.@S1063-651X~96!01507-3#

PACS number~s!: 42.25.Fx, 42.79.Dj, 78.20.Fm, 73.20.Mf

I. INTRODUCTION

It is well known that conversion betweens andp polar-
ization states can occur upon reflection of light at the corru-
gated interface between isotropic materials when the direc-
tion of incidence is not perpendicular to the direction of the
grooves ~conical diffraction! @1,2#. Conversion betweens
andp polarization states can also take place at flat interfaces
when anisotropic materials are involved. The effects of the
simultaneous presence of anisotropy and corrugation on the
rate of conversion between different polarization states was
first studied in Ref.@3# in two cases:s to p conversion when
the incidence is from the isotropic medium onto a crystal and
conversion between ordinary and extraordinary modes when
the incidence is from a uniaxial crystal onto a metal. The
method used in Ref.@3# for calculating the diffracted fields
was based on the Rayleigh hypothesis, an approximation that
for gratings made of isotropic materials is known to be valid
for shallow grooves. Due to this limitation, the results in Ref.
@3# were concerned only with gratings with small values of
the groove height to period ratio.

To explore the possibility of enhancing the conversion
rate between polarization modes at a single anisotropic inter-
face by means of surface reliefs with arbitrary profiles, meth-
ods based on the Rayleigh hypothesis cannot be used safely.
A rigorous approach for calculating the fields diffracted at
the corrugated surface of a uniaxial crystal has been pre-
sented in Refs.@4,5#. It is based on the use of coordinate
transformations for the boundary conditions and although in
principle it permits the surface relief to have an arbitrary
profile, it has the disadvantage of requiring additional ana-
lytical or numerical effort to find the conformal mapping that
transforms each grating profile into a plane. This difficulty is
not present in a powerful method developed by Chandezon
et al. for analyzing gratings made of isotropic materials@6#.
It relies upon the use of very simple coordinate transforma-
tions ~nonconformal! that simplify the treatment of the
boundary conditions and that lead to the numerical solution

of a system of differential equations with constant coeffi-
cients. This method, originally developed for configurations
in which the plane of incidence is perpendicular to the
grooves~classical diffraction!, has been extended to include
the case of conical diffraction@1,2,7# and recently it was
improved through the use of theR-matrix algorithm @8#.
Here we extend the method due to Chandezonet al. to the
case of gratings ruled on the surface of an uniaxial crystal
and use it to study the effects of the simultaneous presence of
anisotropy and corrugation on the rate of conversion between
different polarization states without being limited to gratings
with shallow grooves as in Ref.@3#.

II. FORMULATION OF THE PROBLEM

We consider a periodic corrugated boundaryy5a(x) ~pe-
riod d! that separates an isotropic medium~dielectric or
metal with losses! from a uniaxial crystal with arbitrary ori-
entation of its optic axis. The grooves of the grating are
parallel to thez axis and they axis points towards the iso-
tropic medium~Fig. 1!.

A. Constitutive relations

The isotropic medium is characterized by the following
constitutive relations:

DW 5e1EW , ~2.1!

BW 5m1HW , ~2.2!

wheree1 andm1 are the permittivity and the permeability of
the medium, respectively. In the uniaxial medium the consti-
tutive relations are given by

DW 5 ẽ•EW , ~2.3!

BW 5m2HW , ~2.4!
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where m2 is the permeability of the crystal andẽ is the
dielectric tensor. This tensor can be written in dyadic form as

ẽ 5e' Ĩ1~e i2e'!cŴ0cŴ0 , ~2.5!

wheree' and e i are the eigenvalues ofẽ and Ĩ is the unit

dyadic.cŴ0 is a unit eigenvector~called optic axis! associated
with the nonrepeated eigenvaluee i .

B. Propagation equations

Following the procedure presented in@1,6# we start from
Maxwell’s equations in each medium

¹W 3EW 52
1

c

]BW

]t
, ~2.6!

¹W 3HW 5
1

c

]DW

]t
, ~2.7!

wherec is the velocity of light in vacuum. In order to sim-
plify the treatment of the boundary conditions at the interface
y5a(x), we use a coordinate transformation of the form

u5x, ~2.8!

v5y2a~x!, ~2.9!

w5z, ~2.10!

where (x,y,z) and (u,v,w) are the original and the trans-
formed coordinates, respectively. When we change from co-
ordinates (x,y,z) to (u,v,w) the periodic interface is trans-
formed into a plane and the coordinatesx and z remain
unchanged. The next step is to express the transformed Max-
well’s equations in the isotropic and in the uniaxial zone.

1. Isotropic zone

Writing Maxwell’s equations in the transformed frame we
obtain a system of six equations with six unknowns~the
EW -field andHW -field components!. In matrix form this set of
equations is written as~Appendix A!

FC O

O CGG5
iv0

c F O m1T1

2e1T1 O GG, ~2.11!

whereG is a vector formed by the unknowns of the problem

3
Eu

Ev

Ew

Hu

Hv

Hw

4 .
The system~2.11! can be reduced to a four-variable system
involving the components tangential to the grating surface in
the x2y plane and those in thez direction. The former are
written in terms of theu andv component as

H i5@11a82#Hu1a8Hv , ~2.12!

Ei5@11a82#Eu1a8Ev . ~2.13!

Writing Eq. ~2.11! in terms of thei andw components of the
fields, yields

]Ei

]v
5

]

]u FY2~u!Ei2
Y1~u!

e1
S cg

v0
H i1

ic

v0

]Hw

]u D G
2
iv0m1

c
Hw , ~2.14!

]Ew

]v
5Y1~u!F S iv0m1

c
2
ig2c

v0e1
DH i1

cg

v0e1

]Hw

]u G
1Y2~u!

]Ew

]u
, ~2.15!

]H i

]v
5

]

]u FY2~u!H i1Y1~u!S cg

v0m1
Ei1

ic

v0m1

]Ew

]u D G
1
iv0e1
c

Ew , ~2.16!

]Hw

]v
5Y1~u!F S 2

iv0e1
c

1
icg2

v0m1
DEi2

cg

v0m1

]Ew

]u G
1Y2~u!

]Hw

]u
, ~2.17!

where we have considered the fact that each component of
the fieldsF depends on thew coordinate in the form

F~u,v,w!5F~u,v !exp~ igw!, ~2.18!

and the functionsY1(u) andY2(u) are given by

Y1~u!5
1

11a82
, Y2~u!5

a8

11a82
.

FIG. 1. View of the grating, showing the angles of incidence
~u0 , uo , andue! corresponding to the three types of incident waves
considered in this paper and the angle between the main section of
the grating and the plane of incidence (w).
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2. Uniaxial zone

In the uniaxial zone, the transformed propagation equa-
tions are written in matrix form as~Appendix B!

FC O

O CGG5
iv0

c F O m2T1

2T2 O GG. ~2.19!

Again, this system is reduced to a four-variable system in-
volving the componentsEi , Ew , H i, andHw,

]Ei

]v
5

]

]u FX5~u!Ei1X2~u!S 2
cg

v0
H i2

ic

v0

]Hw

]u

2evwEwD G2
iv0m2

c
Hw , ~2.20!

]Ew

]v
5F iv0m2

c
Y1~u!2

ig2c

v0
X2~u!GH i1 igX3~u!Ei

1
cg

v0
X2~u!

]Hw

]u
2 igX4~u!Ew1Y2~u!

]Ew

]u
,

~2.21!

]H i

]v
5

]

]u FY2~u!H i1Y1~u!S cg

v0m2
Ei1

ic

v0m2

]Ew

]u D G
1
iv0

c
X7~u!Ei1 igX8~u!H i2X8~u!

]Hw

]u

1
iv0

c
X10~u!Ew , ~2.22!

]Hw

]v
5F2

iv0

c
X11~u!1

icg2

v0m2
Y1~u!GEi

1 ig@X12~u!1Y2~u!#H i2X12~u!
]Hw

]u

1
iv0

c
X13~u!Ew2

cg

v0m2
Y1~u!

]Ew

]u
, ~2.23!

where

X1~u!511a8 22a8
evu
evv

,

X2~u!5
1

evvX1~u!
,

X3~u!5
X1~u!2~11a8 2!

~11a8 2!a8X1~u!
,

X4~u!5evwX2~u!,

X5~u!5
X1~u!21

a8X1~u!
,

X6~u!5X4~u!,

X7~u!5
ewu
X1~u!

1ewvFX1~u!2~11a8 2!

a8X1~u! G ,
X8~u!5

a8ewu
evvX1~u!

2
ewv~11a8 2!

evvX1~u!
,

X10~u!5X8~u!evw1eww ,

X11~u!5
euu
X1~u!

1euvFX1~u!2~11a8 2!

a8X1~u! G ,
X12~u!52

a8euu
evvX1~u!

1
euv~11a8 2!

evvX1~u!
,

X13~u!5X12~u!evw2euw .

To check these expressions, it is easy to demonstrate that
Eqs.~2.20!–~2.23! reduce to~2.14!–~2.17! whene i5e' ~iso-
tropic medium!.

C. Incident and diffracted fields

We consider that the grating may be illuminated from the
isotropic~when it is a dielectric! or from the uniaxial side. In
the dielectric medium the incident electric fieldEW 1

i is written
as

EW 1
i 5

1

hF S 2ga0R1
v0

c
m1b0SD xŴ

1S 2
v0

c
m1a0S1gb0RD yŴ1RzŴ Gexp~ ikW i•rW !.

~2.24!

and the incident magnetic fieldHW 1
i is

HW 1
i 5

1

h F S 2ga0S2
v0

c
e1b0RD xŴ

1S 2
v0

c
e1a0R1gb0SD yŴ1SzŴ Gexp~ ikW i•rW !,

~2.25!

where

h5
v0
2m1e1
c2

2g2.

kW i is the incident wave vector and is given by

kW i5a0xŴ2b0yŴ1gzŴ, ~2.26!

where

a05
v0

c
~e1m1!

1/2sinu0cosw, ~2.27!

b05
v0

c
~e1m1!

1/2cosu0 , ~2.28!
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g5
v0

c
~e1m1!

1/2sinu0sinw. ~2.29!

In these expressionsu0 is the angle between the incident
wave vectorkW i and they axis, andw is the angle between the
x2y plane and the plane of incidence.R andS are the am-
plitudes of thez components of the incident electric and
magnetic field, respectively. These amplitudes are expressed
in terms of thes and p polarization amplitudes~As and
Ap! of the incident electric field as

R5Ascosw1Apcosusinw, ~2.30!

S5S e1
m1

D 1/2@2Ascosusinw1Apcosw#. ~2.31!

We now turn to incidence from the uniaxial side. Taking
into account that waves of the ordinary or extraordinary type
can propagate in the crystal we have to distinguish these two
cases in the incident fields. The electric field associated with
an ordinary incident wave is written as

EW 2
i 5CoeWoexp~ ikWo•rW !, ~2.32!

and the corresponding magnetic field is

HW 2
i 5CohW oexp~ ikWo•rW !. ~2.33!

The vectorseWo andhW o specify the polarization of the incident
electric and magnetic fields, respectively, and are given by

eWo5kWo3cŴ0 , ~2.34!

hW o5
c

v0m2
~kWo3eWo!. ~2.35!

kWo is the wave vector associated with an ordinary incident
wave and is written as

kWo5aoxŴ1a1yŴ1gzŴ, ~2.36!

where

ao5
v0

c
~e'm2!

1/2sinuocosw, ~2.37!

a15
v0

c
~e'm2!

1/2cosuo , ~2.38!

g5
v0

c
~e'm2!

1/2sinuosinw, ~2.39!

uo being the angle between the incident wave vector and the
y axis. For an incident wave of the extraordinary type with
wave vector forming an angleue with the y axis we have

EW 2
i 5CeeWeexp~ ikWe•rW !, ~2.40!

and the corresponding magnetic field is

HW 2
i 5CehW eexp~ ikWe•rW !, ~2.41!

whereCe represents the incident amplitude. In this case, the
polarizations of the fields are given by the vectors

eWe5
v0
2

c2
e'm2cŴ02kWe~kWe•cŴ0!, ~2.42!

hW e5
c

v0m2
~kWe3eWe!, ~2.43!

kWe being the wave vector associated with an extraordinary
incident field. It can be expressed as

kWe5aexŴ1a2yŴ1gzŴ, ~2.44!

and

ae56G~ue!sinuecosw, ~2.45!

a256G~ue!cosue , ~2.46!

g56G~ue!sinuesinw, ~2.47!

with

G~ue!5
v0

c F m2e'e i

~e i2e'!~c0xsinuecosw1c0ycosue1c0zsinuesinw!21e'
G1/2. ~2.48!

The upper~lower! sign in expressions~2.45!–~2.47! corre-
sponds toC>0 (C,0! where

C5e'cosue1~e i2e'!c0y~c0xsinuecosw1c0ycosue

1c0zsinuesinw!. ~2.49!

We are now able to write the diffracted fields in both
media. In the isotropic region~for a dielectric! the diffracted
fields can be written as

EW 1
d5(

n

1

h F S 2ganRn2
v0

c
m1bnSnD xŴ1S v0

c
m1anSn

2gbnRnD yŴ1RnzŴGexp~ ikW1n•rW !, ~2.50!

HW 1
d5(

n

1

h F S 2ganSn1
v0

c
e1bnRnD xŴ1S 2

v0

c
e1anRn

2gbnSnD yŴ1SnzŴ Gexp~ ikW1n•rW !. ~2.51!
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In these expressionsRn andSn are unknown complex ampli-
tudes andkW1n is the wave vector of then diffracted order in
the isotropic medium

kW1n5anxŴ1bnyŴ1gzŴ, ~2.52!

where

an5a1
2pn

d
, ~2.53!

bn5S v0
2

c2
e1m12an

22g2D 1/2. ~2.54!

The square root in expression~2.54! is selected so as to
obtain Im(bn).0 or bn.0 if Im(bn)50. a is thex com-
ponent of the incident wave vector and is given by Eq.~2.27!

for a wave incident from the isotropic side, by~2.37! for an
ordinary incident wave and by~2.45! for an extraordinary
one.

In the uniaxial medium the diffracted fields are written as

EW 2
d5(

n
@ConeWonexp~ ikWon•rW !1CeneWenexp~ ikWen•rW !#,

~2.55!

HW 2
d5(

n
@ConhW onexp~ ikWon•rW !1CenhW enexp~ ikWen•rW !#.

~2.56!

In these expressionsCon andCen are unknown complex am-
plitudes andkWon andkWen are wave vectors associated, respec-
tively, with ordinary and extraordinary diffracted waves

kWon5anxŴ1a1nyŴ1gzŴ, ~2.57!

a1n55 2S v0
2

c2
e'm22an

22g2D 1/2 for
v0
2

c2
e'm2.an

21g2,

2 i S an
21g22

v0
2

c2
e'm2D 1/2 for

v0
2

c2
e'm2,an

21g2.

~2.58!

kWen5anxŴ1a2nyŴ1gzŴ, ~2.59!

a2n5
2~e i2e'!c0y~anc0x1gc0z!2~Fn!

1/2

e'1~e i2e'!c0y
2 , ~2.60!

Fn5c0y
2 ~e i2e'!2~anc0x1gc0z!

22@e'1~e i2e'!c0y
2 #F ~an

21g2!e'1~e i2e'!~an
2c0x

2 1g2c0z
2 !

12 ang~e i2e'!c0xc0z2
v0
2

c2
m2e'e iG . ~2.61!

The square root in expression~2.60! is selected so as to
obtain Im(Fn

1/2). 0. The fields associated with the ordinary
diffracted orders are

eWon5kWon3cŴo , ~2.62!

hW on5
c

v0m2
@kWon3eWon#, ~2.63!

whereas the fields associated with the extraordinary dif-
fracted orders are given by

eWen5
v0
2

c2
e'm2cŴo2kWen~kWen•cŴo!, ~2.64!

hW en5
v0

c
e'~kWen3cŴo!. ~2.65!

Having found the expressions of the incident and dif-
fracted fields in the dielectric medium and in the uniaxial
one, we wish to write these expressions in the new coordi-
nate system (u,v,w). We begin by transforming the fields in
the isotropic region@1#. The w component of the incident
electric fieldE1w

i is written in the transformed space as

E1w
i 5Rexp~ igw2 ib0v !exp@ ia0u2 ib0a~u!#,

~2.66!

and thew component of the magnetic field is

H1w
i 5Sexp~ igw2 ib0v !exp@ ia0u2 ib0a~u!#.

~2.67!

Performing a Fourier series expansion Eqs.~2.66! and~2.67!
can be written as

E1w
i 5R(

m
Lm~b0!exp@ i ~amu2b0v1gw!#, ~2.68!
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and

H1w
i 5S(

m
Lm~b0!exp@ i ~amu2b0v1gw!#, ~2.69!

where

Lm~s!5
1

dE0
d

exp{2 i @a~u!s1mKu#} du, ~2.70!

K being equal to 2p/d. Next, we have to find the compo-
nentsi of the incident fields. Using Eqs.~2.15! and~2.17! we
find that these components are written as

E1i
i 5

1

f1(m F S a0

b0
mK2b0DS1~a01mK!

gc

v0m1
RG

3Lm~b0!exp@ i ~amu2b0v1gw!#, ~2.71!

H1i
i 5

1

f2(m F S a0

b0
mK2b0DR2~a01mK!

gc

v0e1
SG

3Lm~b0!exp@ i ~amu2b0v1gw!#, ~2.72!

where

f15
cg2

v0m1
2

v0e1
c

,

f252
cg2

v0e1
1

v0m1

c
.

Using the same procedure, we obtain that thei components
of the diffracted fields are given by

E1i
d 5

1

f1(n (
m

H F2
an

bn
~m2n!K1bnGSn

1@an1~m2n!K#
gc

v0m1
RnJ Lm2n~2bn!

3exp@ i ~amu1bnv1gw!#, ~2.73!

H1i
d 5

1

f2(n (
m

H F2
an

bn
~m2n!K1bnGRn

2@an1~m2n!K#
gc

v0e1
SnJ Lm2n~2bn!

3exp@ i ~amu1bnv1gw!#, ~2.74!

and thew components are written as

E1w
d 5(

n
(
m

RnLm2n~2bn!exp@ i ~amu1bnv1gw!#,

~2.75!

H1w
d 5(

n
(
m

SnLm2n~2bn!exp@ i ~amu1bnv1gw!#,

~2.76!

whereRn andSn are unknowns of the problem and give the
amplitudes of the diffracted orders in the dielectric zone.

We now write the transformed incident and diffracted
fields in the uniaxial medium. By the same procedure fol-
lowed in the isotropic zone thew components of the incident
fields are written as

E2w
i 5Co,e~eWo,e•zŴ !(

m
@Lm~2a1,2!exp@ i ~amu1a1,2v

1gw!#, ~2.77!

H2w
i 5Co,e~hW o,e•zŴ !(

m
@Lm~2a1,2!exp@ i ~amu1a1,2v

1gw!#. ~2.78!

Combining Eqs.~2.21! and~2.23! we find thei components
of the incident fields

E2i
i 5(

n
(
m

@~ ia1,2J1n1 iamJ4n1J5n!~eWo,e•zŴ !

1~ ia1,2J2n1 iamJ3n!~hW o,e•zŴ !#Co,eLm~2a1,2!

3exp@ i ~amu1a1,2v1gw!#, ~2.79!

H2i
i 5(

n
(
m

@~ ia1,2I 1n1 iamI 4n1I 5n!~eWo,e•zŴ !

1~ ia1,2I 2n1 iamI 3n!~hW o,e•zŴ !#Co,eLm~2a1,2!

3exp@ i ~amu1a1,2v1gw!#, ~2.80!

where the subscript 1 (2) corresponds to an ordinary~ex-
traordinary! incident wave. TheI ’s and theJ’s are the Fou-
rier transforms of the following functions:

I 1~u!5F iv0m2

c
Y1~u!2

icg2

v0
X2~u!

1
ig2X3~u!@X12~u!1Y2~u!#

v0

c
X11~u!2

cg2

v0m2
Y1~u! G21

,

I 2~u!5
gX3~u!I 1~u!

v0

c
X11~u!2

cg2

v0m2
Y1~u!

,

I 3~u!5I 2~u!X12~u!2
cg

v0
X2~u!I 1~u!,

I 4~u!5
cg

v0m2
Y1~u!I 2~u!2Y2~u!I 1~u!,

I 5~u!52
iv0

c
X13~u!I 2~u!1 igX4~u!I 1~u!,
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J~u!52
iv0

c
X11~u!1

icg2

v0m2
Y1~u!,

J1~u!52I 1~u!g i @X12~u!1Y2~u!#/J,

J2~u!5$12I 2~u!g i @X12~u!1Y2~u!#%/J,

J3~u!5$X12~u!2I 3~u!g i @X12~u!1Y2~u!#%/J,

J4~u!5H cg

v0m2
Y1~u!2I 4~u!g i @X12~u!1Y2~u!#JY J,

J5~u!5H 2I 5~u!g i @X12~u!1Y2~u!#2
iv0

c
X13~u!JY J.

The i components of the diffracted fields in the uniaxial
medium are given by

E2i
d 5 (

n,m,p
$@ ia1n~eonzJ1p1honzJ2p!1 iamhonzJ3p

1~ iamJ4p1J5p!eonz#ConLm2n~2a1n!exp~ ia1nv !

1@ ia2n~eenzJ1p1henzJ2p!1 iamhenzJ3p

1~ iamJ4p1J5p!eenz#CenLm2n~2a2n!exp~ ia2nv !%

3exp@ i ~amu1gw!#, ~2.81!

H2i
d 5 (

n,m,p
$@ ia1n~eonzI 1p1honzI 2p!1 iamhonzI 3p

1~ iamI 4p1I 5p!eonz#ConLm2n~2a1n!exp~ ia1nv !

1@ ia2n~eenzI 1p1henzI 2p!1 iamhenzI 3p

1~ iamI 4p1I 5p!eenz#CenLm2n~2a2n!exp~ ia2nv !%

3exp@ i ~amu1gw!#, ~2.82!

and thew components are

E2w
d 5(

n,m
@ConeonzLm2n~2a1n!exp~ ia1nv !

1CeneenzLm2n~2a2n!exp~ ia2nv !#

3exp@ i ~amu1gw!#, ~2.83!

H2w
d 5(

n,m
@ConhonzLm2n~2a1n!exp~ ia1nv !

1CenhenzLm2n~2a2n!exp~ ia2nv !#exp@ i ~amu

1gw!#, ~2.84!

whereeonz, honz, eenz, andhenzare thez components of the
vectorseWon , hW on , eWen, andhW en , respectively.

III. NUMERICAL SOLUTION

To solve the problem we have to find the solutions of Eqs.
~2.14!–~2.17! in the isotropic medium and of Eqs.~2.20!–
~2.23! in the uniaxial one. To do so, we expand all the func-
tions of the grating profile in the Fourier series, i.e., each

functionY in Eqs.~2.14!–~2.17! andX in Eqs.~2.20!–~2.23!
can be written as

Y~u!5(
q
Yqexp~ iqKu!, ~3.1!

and

X~u!5(
q
Xqexp~ iqKu!. ~3.2!

Analogously, each component of the fieldsF can be ex-
pressed as

F~u,v !5(
m

Fm~v !exp~ iamu!. ~3.3!

Introducing these expansions in Eqs.~2.14!–~2.17! we obtain

2 i
]Ej

i

]v
5(

m
a jY j2m

2 Em
i 2

cg

v0e1
a jY j2m

1 Hm
i

1F c

v0e1
a jamY j2m

1 2
v0

c
m1d j ,mGHm

w , ~3.4!

2 i
]Ej

w

]v
5(

m
amY j2m

2 Em
w1Fv0

c
m12

g2c

v0e1
GY j2m

1 Hm
i

1
cg

v0e1
amY j2m

1 Hm
w , ~3.5!

2 i
]Hj

i

]v
5(

m

cga j

v0m1
Y j2m
1 Em

i 1F2
c

v0m1
a jamY j2m

1

1
v0

c
e1d j ,mGEm

w1a jY j2m
2 Hm

i , ~3.6!

2 i
]Hj

w

]v
5(

m
F cg2

v0m1
2

v0

c
e1GY j2m

1 Em
i 2

cg

v0m1
amY j2m

1 Em
w

1amY j2m
2 Hm

w . ~3.7!

In order to solve these equations numerically, we truncate
the series in such a way that the indicesj andm have values
between2N andN. Defining a vectorj @(8N14) elements#
formed by the expansions of the components of the electric
and magnetic field

j~v !5F Ei

Ew

H i

Hw

G ,
Eqs.~3.4!–~3.7! can be written in matrix notation as

2 i
dj~v !

dv
5Z1~v !j~v !, ~3.8!

whereZ1 is a (8N14)3(8N14) matrix of the form
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Z15F A1 O1 C1 D1

O1 F1 G1 H1

I1 J1 A1 O1

M1 N1 O1 F1

G , ~3.9!

and where we have followed the notation presented in@1#
and

A15a jY j2m
2 , ~3.10!

C152
cg

v0e1
a jY j2m

1 , ~3.11!

D15
c

v0e1
a jamY j2m

1 2
v0

c
m1d j ,m , ~3.12!

F15Y j2m
2 am , ~3.13!

G15Fv0

c
m12

g2c

v0e1
GY j2m

1 , ~3.14!

H15
cg

v0e1
amY j2m

1 , ~3.15!

I15
cga j

v0m1
Y j2m
1 , ~3.16!

J152
c

v0m1
a jamY j2m

1 1
v0

c
e1d j ,m , ~3.17!

M15F cg2

v0m1
2

v0

c
e1GY j2m

1 , ~3.18!

N152
cg

v0m1
amY j2m

1 , ~3.19!

O150 , ~3.20!

are matrices of (2N11)3(2N11) elements. Equations
~2.20!–~2.23! are rewritten as

2 i
]Ej

i

]v
5(

m
a jX j2m

5 Em
i 2a jX j2m

6 Em
w2

cg

v0
a jX j2m

2 Hm
i

1F cv0
a jamX j2m

2 2
v0

c
m2d j ,mGHm

w , ~3.21!

2 i
]Ej

w

]v
5(

m
gX j2m

3 Em
i 1~Y j2m

2 am2gX j2m
4 !Em

w

1Fv0

c
m2Y j2m

1 2
g2c

v0
X j2m
2 GHm

i

1
cg

v0
amX j2m

2 Hm
w , ~3.22!

2 i
]Hj

i

]v
5(

m
F cga j

v0m2
Y j2m
1 1

v0

c
X j2m
7 GEm

i

1F2
c

v0m2
a jamY j2m

1 1
v0

c
X j2m
10 GEm

w

1@a jY j2m
2 1gX j2m

8 #Hm
i 2X j2m

8 amHm
w ,

~3.23!

2 i
]Hj

w

]v
5(

m
F cg2

v0m2
Y j2m
1 2

v0

c
X j2m
11 GEm

i

1Fv0

c
X j2m
13 2

cg

v0m2
amY j2m

1 GEm
w

1g@X j2m
12 1Y j2m

2 #Hm
i 2amX j2m

12 Hm
w ,

~3.24!

and this system of equations is expressed in matrix form as

2 i
dj~v !

dv
5Z2~v !j~v !, ~3.25!

whereZ2 is a (8N14)3(8N14) matrix of the form

Z25F A2 B2 C2 D2

E2 F2 G2 H2

I2 J2 K2 L2

M2 N2 O2 P2

G , ~3.26!

andA2 . . .P2 are matrices of (2N11)3(2N11) elements
given by

A25a jX j2m
5 ,

B252a jX j2m
6 ,

C252
cg

v0
a jX j2m

2 ,

D25
c

v0
a jamX j2m

2 2
v0

c
m2d j ,m ,

E25gX j2m
3 ,

F25~Y j2m
2 am2gX j2m

4 !,

G25
v0

c
m2Y j2m

1 2
g2c

v0
X j2m
2 ,

H25
cg

v0
amX j2m

2 ,

I25
cga j

v0m2
Y j2m
1 1

v0

c
X j2m
7 ,

J252
c

v0m2
a jamY j2m

1 1
v0

c
X j2m
10 ,
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K25a jY j2m
2 1gX j2m

8 ,

L252X j2m
8 am ,

M25
cg2

v0m2
Y j2m
1 2

v0

c
X j2m
11 ,

N25
v0

c
X j2m
13 2

cg

v0m2
amY j2m

1 ,

O25g@X j2m
12 1Y j2m

2 #,

P252amX j2m
12 .

Therefore, the scattering problem is reduced to find the so-
lutions of the systems~3.8! and ~3.25! with appropriate
boundary conditions at the interface between the two media.
Note that the first and second derivatives of the corrugation
function a(x) appear in the matricesZ1 andZ2 . These de-
rivatives are not defined if the grooves have abrupt corners.
However, the method can also be applied to this kind of
profile by replacing the functiona(x) by its series expansion.

As is shown in@1,6#, the unknown vectorj in Eqs.~3.8!
and ~3.25! can be expanded in terms of the eigenvalues and
eigenvectors of the matrixZ1 andZ2 , respectively. That is to
say, in each medium the vectorj is written as

j~v !5(
q

bq
l Vq

l exp~ ir q
l v !, ~3.27!

whereVq
l (r q

l ) indicates theq eigenvector~eigenvalue! in the
medium l ~l51 isotropic andl5 2 uniaxial! andbq

l are un-
known complex amplitudes. Expansion~3.27! for the vector
j in each medium will be used to impose the boundary con-
ditions at the interface. It is easy to demonstrate that in the
transformed space these conditions imply the continuity of
j at the interface. When the isotropic medium is a dielectric,
this is written as

T1b11111U1B15T2b21121U2B2, ~3.28!

where the first term on the left~right! side of this equation
gives the evanescent field, the second the incident field, and
the third one the propagating field in the medium 1~2!, re-
spectively. On the left hand side of this equationT1 is a
(8N14)3(4N1222P) matrix whose columns are the
eigenvectors of the matrixZ1 associated with the
4N1222P eigenvaluesr q

1 having positive imaginary part,
P being the number of propagating modes in the dielectric
zone. These eigenvalues are the ones that correspond to de-
caying waves asy→` ~outgoing wave condition!. b1 is an
unknown vector of (4N1222P) elements. The vector11

gives the expansions defined in~2.68!–~2.72!. Note that this
vector is null for a wave incident from the uniaxial side.
U1 is a matrix formed by the diffracted field expansions
given by Eqs.~2.73!–~2.76! and B1 is a vector (2P ele-
ments! formed by the unknownsRn and Sn that give the
amplitudes of the diffracted fields in the isotropic medium.

Analogously, on the right hand side we have the matrix
T2 of (8N14)3(4N122Po2Pe) elements. They are the
eigenvectors ofZ2 associated with the 4N122Po2Pe ei-

genvalues with a negative imaginary part~which correspond
to the decaying waves asy→2`). Po (Pe) is the number of
ordinary ~extraordinary! propagating modes in the crystal.
We should note that these modes are those which represent a
flux of energy pointing towardsy,0, i.e., they component
of their associated Poynting vector is less than zero. It can be
demonstrated that this condition is satisfied only if they
components of the diffracted ordinary and extraordinary
wave vectors (a1n and a2n) defined by Eqs.~2.58! and
~2.60! are purely real. If they are complex, the Poynting vec-
tor has no component in they direction and the wave is
evanescent. In this casea1n anda2n have negative imagi-
nary parts, as can be observed in Eqs.~2.58! and~2.60! ~de-
caying waves asy→2`). It can be seen thatb2 is an un-
known vector of (4N122Po2Pe) elements.12 is a vector
giving the expansions~2.77!–~2.80!. U2 is a matrix formed
by the diffracted amplitudes defined in Eqs.~2.81!–~2.84!
and B2 is an unknown vector formed by the amplitudes
Con andCen of the ordinary and extraordinary propagating
waves in the crystal. Thus, Eq.~3.28! represents a system of
8N14 equations with 8N14 unknowns: 4N1222P in
b1, 2P in B1, 4N122Po2Pe in b2 and Po1Pe in B2.
Therefore the solution of this system gives the unknown am-
plitudesRn , Sn , Con , andCen .

Note that Eq.~3.28! is valid when the isotropic medium is
a dielectric. For a metal it makes no sense to separate the
field into evanescent and propagating orders and only inci-
dent waves from the uniaxial side are possible. In this case
Eq. ~3.28! is rewritten as

Tm
1 bm

1 5T2b21121U2B2, ~3.29!

whereTm
1 has now (8N14)3(4N12) elements being the

eigenvectors of the matrizZ1 which correspond to the
(4N12) eigenvalues which are real and positive or have
positive imaginary part andbm

1 is an unknown vector of
(8N14) elements. The procedure to solve the problem is
equal to the one explained above.

IV. RESULTS

In this section we use the formalism presented above to
study polarization conversion from uniaxial gratings of sinu-
soidal profile in the configurations similar to those already
considered in Refs.@3,9# but extending the range of corruga-
tion strengths. Perfect agreement between the method based
on the Rayleigh hypothesis and the formalism presented here
was obtained for gratings with shallow grooves but discrep-
ancies appear when the corrugation is increased. A detailed
comparison between both methods, providing a way to check
the validity of the Rayleigh hypothesis for anisotropic mate-
rials, will be reported elsewhere.

For values ofh/d ~groove height-to-period ratio! ranging
between 0.1 and 0.5 energy conservation was required to
hold within a tolerance of 1026 and in the examples below
this was usually achieved by retaining 11 terms (N55) in
the expansions of the fields. By increasingN from 5 to 6 the
power carried by the specularly reflected and transmitted or-
ders varies within the same tolerance. As the groove height-
to-period ratio is increased, the convergence of the results is
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also obtained forN55, but the error in the power conserva-
tion is of the order of 1023.

Next, we consider a sinusoidal boundary between a non-
lossy isotropic medium (e153.5 andm151) and sodium
nitrate (e'52.58, e i51.71 andm251! illuminated from the
isotropic medium by ans wave. The optic axis is

cŴ050.688yŴ10.725zŴ, a value that gives a maximums-p con-
version for h/d50. The wavelength-to-period ratio~free
space! was set to 1 andw50 ~classical mounting!. In Fig.
2~a! we show the efficiency of the cross-polarized compo-
nent in the zeroth reflected order (r 12

0 ) as a function of the
angle of incidence~for u0 between 57° and 64°) and for
values ofh/d varying from 0.1 to 1, the step of variation
being 0.1. For a flat interface, maximum conversion is ob-
served at that angle of incidence where both transmitted
waves~ordinary and extraordinary! become evanescent~total
reflection!. For the parameters chosen in Fig. 2~a!, this angle
is u0557.85° ~the zeroth ordinary and extraordinary trans-
mitted waves disappear atu0557.85° andu0545.57°, re-
spectively!. As pointed out in@3#, one may think that intro-
ducing a corrugation to the boundary, the power reflected in
the zeroth reflected order would decrease due to the presence

of other orders that propagate into the crystal. However in
the example presented there it was shown that the efficiency
of conversion in the specularly reflected order is not reduced
at least for weak corrugations@with the same parameters as
in Fig. 2~a! but forl0 /d50.5# and that the peaks are present
at exactly the same angles of incidence for which maximum
conversion is observed whenh/d is equal to zero
(u0557.85°). In our example, we also observe that the effi-
ciency of the cross-polarized zeroth reflected order increases
as the value ofh/d increases. Moreover, the peaks of con-
version appear at the same angle at which maximum conver-
sion takes place in a flat interface forh/d lower than 0.4,
approximately. For higher values ofh/d the angles of inci-
dence at which the maximum conversion occurs do not co-
incide with the disappearance of the zeroth transmitted or-
ders and the values of the cross-polarized efficiency are even
higher than the ones observed forh/d varying from 0.1 to
0.4, reaching a value of 0.837 atu0562.67° for h/d51.
This can be observed in Fig. 2~b! where we plot the effi-
ciency of the cross-polarized zeroth reflected order as a func-
tion of the angle of incidence (57°<u0<66°) for h/d be-
tween 0.5 and 1, in steps of 0.05. In this example we have
shown data for values ofh/d up to 1. For values ofh/d
ranging between 0.1 and 0.5 power conservation is verified
with an error of 1026. As the groove height-to-period ratio
increases this error also increases, being 1022 for h/d equal

FIG. 3. ~a! Efficiency of the ordinary-to-ordinaryr oo
0 zeroth re-

flected order as a function of the angle of incidenceuo for
0°,uo,10° and withh/d as a parameter. An ordinary wave is
incident from sodium nitratee'52.58, e i51.71, andm251 into a
metal with e15221.611.4i and m151. Other parameters are

l0 /d50.7424,w50°, andcŴ05(0.57,0.57,0.57).~b! Efficiency of
the extraordinary-to-extraordinaryr ee

0 zeroth reflected order as a
function of the angle of incidenceue for 0°,ue,10° and for dif-
ferent values ofh/d. Other parameters are the same as in~a!.

FIG. 2. ~a! Efficiency of the cross-polarized componentr 12
0 of

the zeroth reflected order by a sinusoidal grating as a function of the
angle of incidence in the region of maximums-p conversion (u0

between 57° and 64°) withh/d as a parameter~for h/d between 0.1
and 1!. An s wave is incident from the isotropic medium with
e153.5 andm151 into sodium nitrate withe'52.58, e i51.71,
and m251. Other parameters arel0 /d51, w50°, and

cŴ05(0,0.688,0.725).~b! Efficiency of the cross-polarized compo-
nent r 12

0 of the zeroth reflected order as a function of the angle of
incidence in the region ofs-p maximum conversion and for values
of h/d greater than 0.5. Other parameters are the same as in~a!.
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to 1. Gratings with higher values ofh/d could be considered
if this error were reduced. We are working in overcoming
this restriction by using a numerical technique based on the
R-matrix propagation algorithm@8#.

Next, we consider a grating illuminated from the uniaxial
side in a region where resonant excitation of surface plas-
mons is expected. We use a sinusoidal boundary between a
metal ~gold at a wavelength of 800 nm with
e15221.611.4i and m151) and sodium nitrate
(e'52.58, e i51.71, and m251!. Other parameters are

cŴ05(0.577,0.577,0.577),l0 /d51.7424, andw50. The ef-
fects produced by the excitation of surface plasmons are
shown in Fig. 3 where we plot the ordinary-to-ordinary
(r oo

0 ) and extraodinary-to-extraordinary (r ee
0 ) efficiencies in

the zeroth reflected orders@Figs. 3~a! and 3~b!, respectively#
as a function of the angle of incidence and for values of
h/d varying from 0.05 to 0.3, the step of variation being
0.05. In Fig. 3~a! we observe a narrow minima in the region
4°,uo,4.6° for h/d between 0.05 and 0.15. When the po-
larization of the incident wave is extraordinary@Fig. 3~b!#, a
similar behavior is observed and the peaks appear at angles
of incidence between 4.5° and 5.2°.

In Figs. 4~a! and 4~b! we plot the absorbed power normal-
ized to the incident power (AP) as a function of the angle of
incidence withh/d as a parameter for the same gratings con-
sidered in Figs. 3~a! and 3~b!, respectively. Both figures
show absorption peaks at approximately the same angles
where the minimum inr oo

0 and r ee
0 occurs. These peaks be-

come higher forh/d up to 0.075, approximately. For this
value of h/d the maximum absorbed power is 0.59 for an
ordinary incident wave@Fig. 4~a!# or 0.434 for an incident
wave of the extraordinary type@Fig. 4~b!#. For greater values
of the groove height-to-period ratio the peaks become lower
and disappear whenh/d is approximately equal to 0.3. The

presence of minima in Figs. 3~a! and 3~b! and of absorption
peaks in Figs. 4~a! and 4~b! is associated with the excitation
of surface plasmons at the interface. For shallow gratings the
position of these peaks can be predicted in an approximated
way by an equation similar to~2.53! wherea is the real part
of the complex pole of the determinant of the reflection ma-
trix for a plane interface.

In Fig. 5~a! we plot the ordinary-to-ordinary and the
extraordinary-to-extraordinary efficiencies of the zeroth re-
flected order as a function ofw for the same gratings consid-
ered in Figs. 3~a! and 3~b!. The angle of incidence and the
groove height-to-period ratio were selected from Figs. 3~a!
and 3~b! as the ones that minimize the quantitiesr oo

0

(uo54.53°, h/d50.075) andr ee
0 (ue55.06°, h/d50.075),

respectively. The other parameters are the same as in the
previous figures. We observe thatr oo

0 and r ee
0 are strongly

dependent on the value ofw. Whenw50°, r oo
0 andr ee

0 have
their minimum value~0.138 forr oo

0 and 0.244 forr ee
0 ). If we

increase the value ofw these quantities also increase reach-
ing a maximum (r oo

0 50.919 and r ee
0 50.927) when

w590°. In Fig. 5~b! we show the efficiency of the zeroth
extraordinary reflected order (r oe

0 ) as a function ofw. The
polarization of the incident wave is ordinary and the angle of
incidence isuo54.53°. Other parameters are the same as
Fig. 5~a!. In this case, we observe that the efficiency de-
creases when the value ofw is increased, beingr oe

0 lower
than 0.025 forw greater than 70° approximately.

FIG. 4. ~a! Absorbed power normalized to the incident power
AP for the same parameters considered in 3~a!. ~b! Absorbed power
normalized to the incident powerAP for the same parameters con-
sidered in 3~b!.

FIG. 5. ~a! Efficiency of the ordinary-to-ordinary and
extraordinary-to-extraordinary zeroth reflected order (r oo

0 and r ee
0 )

as a function ofw. h/d50.075 anduo54.53° for the curver oo or
ue55.06° for the curver ee. Other parameters are the same as Fig.
4~a!. ~b! Efficiency of the cross-polarized zeroth reflected order
r oe
0 as a function ofw. The incident wave is ordinary.u054.53°
andh/d50.075. Other parameters are the same as Fig. 4~a!.
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V. CONCLUSION

Surface relief gratings with birefringent properties are of
interest in communication technology and many other appli-
cations in which we are interested in mechanisms that pro-
vide means of switching information flow from one channel
to another. In this paper we explored the possibility of en-
hancing the conversion rate between polarization modes at a
single anisotropic interface by means of surface reliefs with
arbitrary profiles. To do so, we extended to the anisotropic
media a versatile rigorous method originally developed by
Chandezonet al. @6# for the diffraction gratings made of
isotropic materials. Whereas previous studies on the subject
were valid only for weak corrugations, our analysis has no
restriction on the surface relief profile. Furthermore, it can
handle general configurations in which the incident beam is
associated to waves coming either from the isotropic or from
the uniaxial side and any orientations with respect to the
grooves of the grating for the plane of incidence and for the
optical axis of the crystal.
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APPENDIX A

In the new coordinate system, Eq.~2.6! is written as@1#

FvW 1
]

]u
1vW 2

]

]v
1vW 3

]

]wG~EuvW 11EvvW 21EwvW 3!

5
iv0

c
m1~HuvW 11HvvW 21HwvW 3!, ~A1!

where we have assumed a harmonic time dependence of the
form exp(2iv0t), v0 being the frequency of the incident ra-

diation. ThevW ’s are the contravariant and covariant vectors
and for this system are given by

vW 15xŴ , vW 25yŴ2a8xŴ , vW 35zŴ,

vW 15xŴ1a8,yŴ vW 25yŴ , vW 35zŴ,

wherexŴ ,yŴ ,zŴ are the unit vectors in the original space and
a8 is the derivative ofa(u) with respect tou.

Analogously, Eq.~2.7! is transformed into

FvW 1
]

]u
1vW 2

]

]v
1vW 3

]

]wG~HuvW 11HvvW 21HwvW 3!

52
iv0

c
e1~EuvW 11EvvW 21EwvW 3!. ~A2!

Expansion of Eqs.~A1! and ~A2! leads to a system of six
equations with six unknowns (Eu , Ev , Ew , Hu , Hv, and
Hw). Following the notation presented in@1# this system can
be written in matrix form as

FC O

O CGG5
iv0

c F O m1T1

2e1T1 O GG, ~A3!

whereO is a matrix of zeros (333). The matricesC and
T1 are given by

C5F 2a8
]

]w

2]

]w

]

]v

]

]w
0

2]

]u
1a8

]

]v

a8
]

]u
1a92@11a8 2#

]

]v
]

]u
2a8

]

]v
0

G , ~A4!

T15F 1 0 0

a8 1 0

0 0 1

G , ~A5!

andG is a vector formed by the unknowns of the problem

3
Eu

Ev

Ew

Hu

Hv

Hw

4 .
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APPENDIX B

As in the isotropic medium, in the uniaxial zone Eq.~2.6!
is transformed into an expression of the form~A1!

FvW 1
]

]u
1vW 2

]

]v
1vW 3

]

]wG~EuvW 11EvvW 21EwvW 3!

5
iv0

c
m2~HuvW 11HvvW 21HwvW 3!, ~B1!

where we have only changedm1 by m2 .
By a similar procedure Eq.~2.7! is written as

FvW 1
]

]u
1vW 2

]

]v
1vW 3

]

]wG~HuvW 11HvvW 21HwvW 3!

52
iv0

c
~DuvW 11DvvW 21DwvW 3!. ~B2!

Taking into account Eq.~2.3!, the componentsDu , Dv, and
Dw are written in terms ofEu , Ev, andEw, as follows:

Du5euuEu1euvEv1euwEw , ~B3!

Dv5evuEu1evvEv1evwEw , ~B4!

Dw5ewuEu1ewvEv1ewwEw , ~B5!

wheree i , j are the elements of the tensorẽ in the transformed
frame and are given by

euu5e'1~e i2e'!~c0x
2 1a8c0xc0y!, ~B6!

euv5~e i2e'!c0xc0y , ~B7!

euw5~e i2e'!c0xc0z , ~B8!

evu5~e i2e'!@a8~c0y
2 2c0x

2 !1~12a8 2!c0xc0y#, ~B9!

evv5e'1~e i2e'!~c0y
2 2a8c0xc0y!, ~B10!

evw5~e i2e'!c0z~2a8c0x1c0y!, ~B11!

ewu5~e i2e'!c0z~a8c0y1c0x!, ~B12!

ewv5~e i2e'!c0yc0z , ~B13!

eww5e'1~e i2e'!c0z
2 , ~B14!

wherec0x , c0y , andc0z are the rectangular components of

the optic axiscŴ0 .
Expressing the componentsDu , Dv andDw in Eq. ~B2!

in terms ofEu , Ev andEw , Eqs.~B1! and ~B2! represent a
system of six equations with six unknowns which can be
express in matrix notation as

FC O

O CGG5
iv0

c F O m2T1

2T2 O GG, ~B15!

where theC, O, T1 , andG have been defined before and

T25F euu euv euw

a8euu1evu a8euv1evv a8euw1evw

ewu ewv eww
G .

~B16!
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