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Polarization conversion from diffraction gratings made of uniaxial crystals
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We study polarization conversion in the diffraction of light at the periodically corrugated boundary between
an isotropic medium and a uniaxial crystal. To do so, we extend a rigorous method originally developed for
diffraction gratings made of isotropic materials to include the case of anisotropic media. The theoretical
formalism relies upon the use of easy coordinate transformations that map the periodic interface onto a plane.
We consider a general configuration in which the incident beam is associated to waves coming either from the
isotropic or from the uniaxial side, with any orientation with respect to the grooves of the grating for the plane
of incidence(conical diffraction and for the optical axis of the crystal. The analysis involves no restrictions on
the surface relief profile. We apply the method to study conversion between polarization states upon reflection
in two situationsi(i) incidences from an isotropic, lossless dielectric onto a crystal near total reflectidi)and
from a crystal onto a metal near the resonant excitation of surface plasmons. Good results have been obtained
for a groove height-to-period ratio up to [151063-651X96)01507-3

PACS numbses): 42.25.Fx, 42.79.Dj, 78.20.Fm, 73.20.Mf

[. INTRODUCTION of a system of differential equations with constant coeffi-
cients. This method, originally developed for configurations
It is well known that conversion betweenandp polar-  in which the plane of incidence is perpendicular to the
ization states can occur upon reflection of light at the corrugrooves(classical diffractiop, has been extended to include
gated interface between isotropic materials when the diredhe case of conical diffractiof1,2,7] and recently it was
tion of incidence is not perpendicular to the direction of theimproved through the use of thR-matrix algorithm [8].
grooves (conical diffraction [1,2]. Conversion betweers Here we extend the method due to Chandeebal. to the
andp polarization states can also take place at flat interfacegase of gratings ruled on the surface of an uniaxial crystal
when anisotropic materials are involved. The effects of theand use it to study the effects of the simultaneous presence of
simultaneous presence of anisotropy and corrugation on thenisotropy and corrugation on the rate of conversion between
rate of conversion between different polarization states wagifferent polarization states without being limited to gratings
first studied in Ref[3] in two casess to p conversion when With shallow grooves as in Reff3].
the incidence is from the isotropic medium onto a crystal and
conversion between ordinary and extraordinary modes when Il. FORMULATION OF THE PROBLEM
the incidence is from a uniaxial crystal onto a metal. The ] o
method used in Ref3] for calculating the diffracted fields Ve consider a periodic corrugated boundgrya(x) (pe-
was based on the Rayleigh hypothesis, an approximation th#ed d) that separates an isotropic mediuielectric or
for gratings made of isotropic materials is known to be valigMetal with lossesfrom a uniaxial crystal with arbitrary ori-
for shallow grooves. Due to this limitation, the results in Ref.€ntation of its optic axis. The grooves of the grating are
[3] were concerned only with gratings with small values ofParallel to thez axis and they axis points towards the iso-
the groove height to period ratio. tropic medium(Fig. 1.
To explore the possibility of enhancing the conversion
rate between polarization modes at a single anisotropic inter- A. Constitutive relations
face by means of surfacg reliefs with _arbitrary profiles, meth- The isotropic medium is characterized by the following
ods based on the Rayleigh hypothesis cannot be used Safel}’onstitutive relations:
A rigorous approach for calculating the fields diffracted at '
the corr_ugated surface_ of a uniaxial crystal has bee_n pre- 5261& 2.1
sented in Refs[4,5]. It is based on the use of coordinate
transformations for the boundary conditions and although in
principle it permits the surface relief to have an arbitrary
rofile, it has the disadvantage of requiring additional ana- I .
IF;/ticaI or numerical effort to fingd the co?lformgal mapping that whereell andu, are t_he permittivity 'anq the permeablllty Of.
transforms each grating profile into a plane. This difficulty isthe_ med'“'?“- respectl_vely. In the uniaxial medium the consti-
not present in a powerful method developed by Chandezoft'tVe relations are given by
et al. for analyzing gratings made of isotropic materigas.

It relies upon the use of very simple coordinate transforma- D=eE, 23
tions (nonconformal that simplify the treatment of the . .
boundary conditions and that lead to the numerical solution B=pu,H, (2.9
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A . . _ %o
isotropic =— G, (2.1)
\memdiu'rgn o C c|l-eT, O
0, whereG is a vector formed by the unknowns of the problem
>>;—.< X r Eu-
y = alx) i Ih E,
d
Z A Euw
uniaxial Hy
\ crystal Hv
- HW-

FIG. 1. View of the grating, showing the angles of incidence The systen(2.11) can be reduced to a four-variable system
(6o, 65, andé,) corresponding to the three types of incident wavesjnyolving the components tangential to the grating surface in
considered in this paper and the angle between the main section gfe x—y plane and those in the direction. The former are
the grating and the plane of incidence)( written in terms of thau andv component as

where M2 is the pgrmeability of the grysta}l anel i§ the HH=[1+a’2]Hu+a’Hv, 2.12
dielectric tensor. This tensor can be written in dyadic form as
-~ = - Ej=[1+a’'?]E,+a’E,. 2.1
e=¢€, 1+ (e—€,)CoCo, (2.5 1=t 1By Y 213
wheree, and ¢ are the eigenvalues & and| is the unit X\ézg?gyi?d(sz'ln in terms of the| andw components of the
dyadic.c, is a unit eigenvectofcalled optic axis associated ’
with the nonrepeated eigenvaleg. JEy af_, Yiu) [cy ic 9H,,
o oY WET oMt o
B. Propagation equations _
Following the procedure presented[ih6] we start from _ %ot Hy (2.149
Maxwell's equations in each medium ¢
. . 1¢B IE,, iwouy  i7%C cy dHy,
XE=——— . —=)1 —
VXE c dat’ 2.8 Jdv YW ( c W€ Hj+ wp€; du
3 JE
> > 10D +y2(U)_W (2 13
X = — — . ’ .
VXH=——, 2.7 au
wherec is the velocity of light in vacuum. In order to sim- aHy a|_, o L cy it ic JE,
plify the treatment of the boundary conditions at the interface 5, — gg| Y (WHTY (W) wors 1 wopy du

y=a(x), we use a coordinate transformation of the form

iwofl
u=x, (2.8 o Ew (2.16
=y—a(x), 2.9 ) .
v=y-a) 29 Hy Ia)061+ icy? E cy JEy,
W=2, (21@ dv y U) B C wWoM1 ™ WoM1 W
where &,y,z) and (U,v,w) are the original and the trans- +2 IHy, 21
formed coordinates, respectively. When we change from co- Y=(u) au ' (.17

ordinates X,Y,z) to (u,v,w) the periodic interface is trans-

formed into a plane and the coordinatesand z remain  where we have considered the fact that each component of
unchanged. The next step is to express the transformed Maie fieldsF depends on thev coordinate in the form
well’s equations in the isotropic and in the uniaxial zone.

) F(u,v,w)=F(u,v)expiyw), (2.19
1. Isotropic zone
Writing Maxwell’s equations in the transformed frame we and the functiong/*(u) and Y%(u) are given by
obtain a system of six equations with six unknowise
E-field andH-field components In matrix form this set of
equations is written agAppendix A

!

1
YHW= 13 VA= 1ge
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2. Uniaxial zone

In the uniaxial zone, the transformed propagation equa-

tions are written in matrix form aéAppendix B

CO _iwo
O Cc|- ¢

O #oTq

1, o G. (2.19

2901

Again, this system is reduced to a four-variable system in-

volving the componentg, E,,, Hj, andH,,

el 9| o ( cy ic oH,,
i ——— 4+ X2 - — "
Jv du X (U)E” AW (o) | wg Jdu
T wopo

- EUWEW> - c Hy, (2.20
(9EW inIu’Z 1 I)/ZC > ) 3
- = = - +
e P YH(u) P X2(u) H” iyX (U)E“

cy , Hy ., , IEy
+_ —_ + —_
OX (u) 20 i yX*(U)E,,+ Y (u) R

(2.20)
(QHH_ J 5 1 cy ic JE,
o~ au| Y WHIFY O BT oo U
iwo 7 ) 8 8 (7HW
+— + - —_—
c X (WE+iyX®(U)H—&%(u) oY
)
+ TO)ClO(u)EW, (2.22

(2.23

where

€
xYu)=1+a’2-a’ =,

6UU

G ermy
XY(u)—(1+a'?

Xa(u): (1+ar Z)a/Xl(u) ’

XH(u) = e,y X3(),

XY u)—-1

XS(U):W,

X%(u)=x%(u),

1 ’ 2
70— €wu AH(u)—(1+a"9)
X (U) Xl(U) +€Wu a’Xl(u) ’
a'e €y, (1+a’?
XS(U)Z Xi/vu _ wo( 1 ),
€,, X (U) €,, X (U)
Xlo(u):XB(u)fvw+Ewwa
1 ’ 2
11 — EUU X (U)_(1+a )
X (U) Xl(u) €u a’Xl(u) ’
a'e €, (1+a’?)
12y — uu uv
Y= 0 " e W

Xlg(u) = Xlz(u)evw_ €uw -

To check these expressions, it is easy to demonstrate that
Egs.(2.20—(2.23 reduce t02.14—(2.17) whenej=¢, (iso-
tropic mediun.

C. Incident and diffracted fields

We consider that the grating may be illuminated from the
isotropic(when it is a dielectricor from the uniaxial side. In

the dielectric medium the incident electric fie] is written
as

B = R+ 4,pSR
1= Yo P #1BoS|X

w o o e -,
+ _?0 ,(Llaos+ ’yﬂoR) y+ R? eX[Xiki . I’).
(2.29
and the incident magnetic field! is
= S— e, B0R|%
1= Yo P €1B80R|X
wq e S o -
+ —?elaoRer,BOS y+Szexpik;-r),
(2.295
where
_ wgﬂ«lfl 2
n c2 v
IZi is the incident wave vector and is given by
Ei:ao)_()_ﬂoy)"‘ ’}’Z, (22@
where
wo .
a0=?(61;¢1)1/28|n00C03p, (2.27
Wo
Bo=—(e1u1)Y’c0y, (2.28

c
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o . . o -
y= ?(el,ul)l/zsmaosm(p. (2.29 a0=?(eluz)1’25m00cos<p, (2.37)

In these expressiond, is the angle between the incident

@o
wave vectok; and they axis, ande is the angle between the al_?(eﬂ*Z
x—Yy plane and the plane of incidende.andS are the am-

)Y2cos,, (2.38

plitudes of thez components of the incident electric and o Vo )
magnetic field, respectively. These amplitudes are expressed v=7 (eLma) %sind,sine, (2.39
in terms of thes and p polarization amplitudegA; and
A,) of the incident electric field as 0, being the angle between the incident wave vector and the
, y axis. For an incident wave of the extraordinary type with
R=Ascosp+ A codfsing, (230 Wwave vector forming an anglé, with they axis we have
1/2 o N S s
S= (%) [— Acosfsing+A,cosp].  (2.3) Ez=Ceeeexplike-r), (2.40
1

and the corresponding magnetic field is
We now turn to incidence from the uniaxial side. Taking

into account that waves of the ordinary or extraordinary type |3|i2: Ceﬁeexp(ilze- F), (2.41)
can propagate in the crystal we have to distinguish these two
cases in the incident fields. The electric field associated withwhereC, represents the incident amplitude. In this case, the

an ordinary incident wave is written as polarizations of the fields are given by the vectors
EL = CoeoexpliKo 1), 23 R
2= Coborilikort) (232 6= b e, o RelKe-Eo) 242
and the corresponding magnetic field is
- . - - . c . .
H,=Cohoexpliky-r). (2.33 he= wo,uz(keer)' (2.43

The vectors, andh, specify the polarization of the incident -

electric and magnetic fields, respectively, and are given by!(e _bemg _the wave vector associated with an extraordinary
incident field. It can be expressed as

e, =k Xé , 2.3 s - S A

o Rom 0 (2.34 Ke= aeX+ apy+ yZ, (2.44

h=—C (K,X&,) (235 and

= €)- .
® womy O °
. ae=*1(6,)Sinf.cOp, (2.4H
k, is the wave vector associated with an ordinary incident

wave and is written as a,=*T'(6,)cod,, (2.49
K= aoX+ary+ vz, (2.36 y=+T(8,)sind.sing, (2.47)

where with

1/2
_ % M2€ | €|

T'(6e) C | (€= €,)(CoxSINGCOSp+ C(, COH + Co,SiNBSiNg)?+ €, (2.48

The upper(lower) sign in expression$2.45—(2.47) corre-

>d 1 (O] S o
sponds to¥ =0 (¥ <0) where Elz; i YR = = #1BnSn | X+ | ma1anSy
W =€, O+ (€]~ €, ) Coy(CoxSiNGLCOSp + CyCOH — yB.R, |y +R.Z|exp(iKyn 1), (2.50
+Cy,SiNfSing). (2.49
> 1 (O] - wqo
. . . . HcljZZ _|:(_yanSrT+?€1Ban X+ _?flaan
We are now able to write the diffracted fields in both n 7
media. In the isotropic regiofor a dielectrig the diffracted R .
fields can be written as — YBnSh | Y+ Snz|expliky,-T). (2.5)
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In these expressiori®, andS,, are unknown complex ampli-

tudes andzln is the wave vector of tha diffracted order in
the isotropic medium

Kin=a X+ By + vZ, (2.52
where
2mn
ag=at—, (2.53
2 1/2
W
Bn= (?elm— an— 72) : (2.54

The square root in expressid2.54) is selected so as to
obtain Im(8,)>0 or 8,>0 if Im(B,)=0. « is thex com-
ponent of the incident wave vector and is given by €27

>
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for a wave incident from the isotropic side, K.37) for an
ordinary incident wave and b§2.45 for an extraordinary
one.

In the uniaxial medium the diffracted fields are written as

E9= [ Coror@XPliKon' ) + Corer@XRliKer 7],
(2.55

5= [Confion@XPliKon: 1)+ CorferexpliKen: )]
(2.56

In these expressior,,, andC,, are unknown complex am-

plitudes andzOn andlzen are wave vectors associated, respec-
tively, with ordinary and extraordinary diffracted waves

Kon= apX+ a Y+ yZ, (2.57
2 112 2
“o 2 @Wg 2
—<?quz—an—72 for = €L ua>an+ ¥%,
®1n— 2 12 2 (2.58
| 2. .2 o “o 2, .2
—l apt T2 Lk fOf?q,u2<an+y .
Een: apX+agy+ vz, (2.59
B (6” B EJ-)COy( anCox T 7C02) - (q)n)llz
@Xon™— 2 , (2.60
EL+(€H_EL)COy
2 2 2 2.2 2
O,= COy( €~ EJ_)Z( @nCoxt+ YCOZ)Z_[Q +(€\|_ Q)Coy] (ap+ ’)’2) €1 +(€H_ €)(apnCot 72002)
p
+2 any(€)~ € )CoxCor 7 M2€L €| |- (2.61

The square root in expressid2.60 is selected so as to

Having found the expressions of the incident and dif-

obtain Im(d)ﬁ’2)> 0. The fields associated with the ordinary fracted fields in the dielectric medium and in the uniaxial

diffracted orders are

>

€on=KonXCo,

(2.62

Ron [KonX €onl, (2.63

wWol2

whereas the fields associated with the extraordinary dif

fracted orders are given by

2
- 9o PO P
een:?eiﬂzco_ken(ken'co)a (2.64
> _“Y - s
hen:?EL(kenxco)- (2.69

one, we wish to write these expressions in the new coordi-
nate systemu,v,w). We begin by transforming the fields in
the isotropic regior{1]. The w component of the incident
electric fieldE},, is written in the transformed space as

L w=Rexp(i yw—iBqv)exdiaqu—iBea(u)],

(2.69

and thew component of the magnetic field is

HY = Sexp(iyw—iBov)exfiagu—iBoa(u)].
(2.67)

Performing a Fourier series expansion E@s66) and(2.67)
can be written as

= R% Lm(Bo)exi (amu—Bov +yw)1, (2.69
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and whereR,, andS,, are unknowns of the problem and give the
amplitudes of the diffracted orders in the dielectric zone.
P . _ We now write the transformed incident and diffracted
HlW_S% Lm(Bo)exdli(amu—Bov+yw)], (2.69 fields in the uniaxial medium. By the same procedure fol-
lowed in the isotropic zone the components of the incident
where fields are written as

Lm<s>:%J:exp{—i[a<u>s+mr<u]}du, (2.70 E;W=co,e<éo,e72>§ [Lon( — e Dexi(amu+ay

K being equal to zr/d. Next, we have to find the compo- +yw)], 2.7
nents| of the incident fields. Using Eq2.15 and(2.17) we

find that these components are written as i -3 .
P HIZWZ Co,e(ho,e‘z)% [Lm(_al,z)exlil(amu'l'al,zv

El = 12 %0 mK s K) R
=14 ﬂ_om —Bo|St(apg+m )m + yw)]. (2.78
X Ln(Bo)exdi(amu— Bov + yW)], (2.7)  Combining Eqs(2.21) and(2.23 we find the| components
of the incident fields
H=— [(—mK— )R—(a +mK) S . N
. f2% Bo Fo ° @o€1 EI2\|:E 2 [(ial,len"HamJ4n+J5n)(eo,e'z)
n m
XLm(Bo)exdi(amu—Bov+ ywW)], (2.72 _ _ N
+(|a1,2]2n+|amJ3n)(ho,e’Z)]Co,el-m(_al,z)
where
Xexdi(amu+ a v+ yw)], (2.79
fl: C’y _ wofl' | ) i
wors ¢ HI2||:; % [(ia1,2|1n+iam|4n+|5n)(eo,e'z)
f2=— ¢y’ + @ott . . > 3
B Wo€q c +(lagdontiamlzn)(Noe 2)]Coelm(—ayp)

Using the same procedure, we obtain that [flmponents Xexfi(amut g+ yw)], (280

of the diffracted fields are given by where the subscript 1 (2) corresponds to an ordinamy

1 traordinary incident wave. The’s and theJ’s are the Fou-
d an . . . .
El\\:ﬁz > [ - F(m—n)m-ﬁn S, rier transforms of the following functions:
n m n
fwopo icy?
yC — 1 _ 2
+[an+<m—n)K]—Rn]Lmn<—ﬁn) (W)= =YW= AW
wWoM7
Xexdi(anu+ Brv+ yw)], (2.73

N iy23(u)[ X(u)+ Y3 (u)]] L

1 n ch2 )
HgH:ﬁ; % [ —a—n(m—n)K+Bn R, %X“(u)— wolzyl(U)
_ _ e _ X3(u)l4(u
[ant+(m n)K]woel Sn] Lin—n(=8n) l(u)= o YA 01;2 ) ,
X exf i — XM (u)— ——Y*(u)
exdi(amu+ Bnv+yw)], (2.74 c woly

and thew components are written as cy
(W) =To(W) XM(u) = —=X2(u)l4(u),
0

Edw=2 > Rilm n(—Brexdi(apu+ Bw+yw)],
(2.79 |4<u>=%y%u)lz(u)—y%u)llw),

Hiw=2 2 Sibm-n( = Bo)exti(anu+ B +yw)],

.76 5(0) = = S22 )+ W)y (W),
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i function)in Egs.(2.14—(2.17) and X in Egs.(2.20—(2.23
J(u)=— /"Cll(u)Jr wort 1(U) can be written as

Jl(u)=—|l(u)’yi[X12(u)+y2(u)]/J, y(u):E yle[Xquu), (3.0
q
Jp(u) ={L1—=1I5(u) yi[ X3 (u)+Y*(u)1HJ,

Jg(u) ={ XA u) — I5(u) yi LX)+ VAW I},

and

cy X(u)=2, XexpigKu). (3.2
J4(U)=|myl(U)—|4(U)7i[X12(U)+372(U)]]/ J d

Analogously, each component of the fiel#scan be ex-
_ iw pressed as
Js(u>=[—15(u>w[2f12<u>+y2(u>]—T°X13(u>]/J.

The | components of the diffracted fields in the uniaxial
medium are given by

F(u,0)=2 Fn(v)expiamu). (3.9

Introducing these expansions in E¢3.14—(2.17) we obtain

Egnzgp {[i c1n(€ond1p+Nondap) +iamhondzp JE|

—i— =2 a)i N ayJ mHl
+(ia’mJ4p+JSp)eonL-|Coanfn(_aln)eXF(iaan) " woe

+[i a’2n(eenzjlp+ heanZp) +i amheanBp

+(i am‘]4p+ JSp)eenz]Cean— n(— azn) exXp(i a2nv)}

Cc w
1 0
—elaJ amyl “m_ ?/‘ngj,m:| anv-l, (34)

i C o5 2 ot
xexi(amut yw)], (2.87) _IW:% amYi_mEmt| o B ooes VimHi
Hgl\: 2 {[ialn(eonzllp+honz|2p)+iamhonz|3p Cy 1 w
n,m,p +—amy-, H ) (35)
wo€1 J=m=m
+(ia’m|4p+|5p)eonz-|con|—mfn(_aln)exrﬂalnv)
+[i @on(€and 1p+ Nend 20) + i @mhend —iﬁ—HE‘:E my.l El +|— aa Y}
| 2nl€enzd 1p T NenZ 2p mlenZ 3p | e oy immem oy 1¢mY-m
+(|am|4p+ISp)eenﬂcean—n(_QZn)eXFﬂa2nv)} 0o
x exg i (apu+yw)], (2.82 €10 m|Emt @i oHb, (3.6
and thew components are
P oHY cy? o
1= _ X0 el - 1w
g . I w = | wou c 1 y] mE “ a’myjmem
EZWZE [Con€ond-m—n(—ain)eXpliain) ot !
n,m 2 w
+amyj_mHm. (3.7

+ Cerend m—n(—azn)expliaznw)] . .
In order to solve these equations numerically, we truncate

Xexfi(apu+yw)], (2.83  the series in such a way that the indigeandm have values
between— N andN. Defining a vecto& [(8N+4) element$
_ _ ; formed by the expansions of the components of the electric
= Conhond expi
E [Conhond m—n(— a@1n)expiav) and magnetic field
+ CenNend-m—n(— @zn)expli apnv) lexd i(amu EH
+yw)], (2.89 E,
0=y .

wheree,;, Nonzy €enp andhg,, are thez components of the
vectorseyn, hon, €en andhg,, respectively.

Il NUMERICAL SOLUTION Egs.(3.4—(3.7) can be written in matrix notation as
To solve the problem we have to find the solutions of Egs. i d§( —Z,(0) &) 3.9

(2.14—(2.17) in the isotropic medium and of Eq§2.20- vIstvls :

(2.23 in the uniaxial one. To do so, we expand all the func-

tions of the grating profile in the Fourier series, i.e., eachwhereZ, is a (8\N+4)X(8N+4) matrix of the form
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| _
A1 Ol Cl Dl _| (9_H]: Cya'yi_m+ @X?_m Eun
. O, F1 G H v S| wopp” c
g3 AL Off 39
1 1 1 1 c 1 o 10 w
Ml Nl Ol Fl + _majamyj7m+ ?Xjfm Em
and where we have followed the notation presentefilin +[ajy,-2_m+ )’X?_m]HL—X?_mamHﬂ,
and (3.23
— 2
Ar=aiVim. (3.10 _oHY' Y i @0 |
cy o % Loas i B
Ci=— a V| (3.11)
Y oy 1M 4|01 Cy 1 |gw
j—-m woﬂzamyjfm m
D_L . 1 _ %o S 3.1 12 2 | _ 12 4w
1=, a’Ja’my]—m 19 m> (3.12 +'Y[Xj—m+yj—m]Hm a’ij—mHm!
0€1 C
(3.29
=2
F1=Yj-m@m, 3.13 and this system of equations is expressed in matrix form as
2
@o YCin _d&(v)
Gl_ c M1 wo€y yi—m! (314} —IT—ZQ(U)f(U), (323
cy L whereZ, is a (8\N+4)X(8N+4) matrix of the form
Hy= anYi-ms (3.15
Wo€1 A, B, C, D,
E2 F2 G H;
_Cyaj Z,= , (3.26
MZ N2 O2 I:)2
Cc w
Ji=——q amyjl,er —Oeléj,m, (3.17 andA, ...P, are matrices of (R+1)X(2N+1) elements
@okt1 ¢ given by
2 5
_ C’y o 1 A2=anj_m,
|wopr  © €11 Yj-m> (318 .
Bzz—aj/'\’j,m,
cy 1
N,=— amVi_m, (3.19 c
! wopqg MM C2=——7anj2,m,
Wo
01:0 y (32@ c
__ 2 %o
. . Dy=—ajandj_p M20) m,
are matrices of (R+1)X(2N+1) elements. Equations o c
(2.20—(2.23 are rewritten as 3
| Ex=y&{_m,
JE; cy
e 5 6 2
_I%—% anj—mEun_anj—mE\rI\:_w_oanj—mHun F2:(yj2—mam_ fy‘)(?_m)’
2
c g _%o 1 YC .,
+ w—oajamxj?_m— ?Mzaj,m}HV”V,, (3.20) Go=— #2Vj-m onj_m,
IEY _Cy 2
: Ho=—a X
—i = 2 X Bt (V] mam— YA ) ER 27 g dm -
2 Cya; w
“o 1 Y€ .2 I _ =% 07
+ ?szj_m—w—oXj_m}Hm I, wOMZyJ_m+ CXJ—my
Cy c
+w_aij2—man\'I11 (322 J2:_ alamyjl,m—l— —OXJlgm,

0 Wol2
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K,= aijZ_m+ ygglﬁ_m' genvalues with a negative imaginary pésthich correspond
to the decaying waves §s— —»). P, (P,) is the number of
L,=— X]'Sfmamv ordinary (extraordinary propagating modes in the crystal.
We should note that these modes are those which represent a
cy? 1 ®o_ 1, flux of energy pointing towardg<0, i.e., they component
MZZMyjfm_ ?Xjfmv of their associated Poynting vector is less than zero. It can be

demonstrated that this condition is satisfied only if the
c components of the diffracted ordinary and extraordinary
Np=—X7"— AnYi—m> wave vectors &q, and «,,) defined by Egs.(2.58 and
@Wok2 (2.60 are purely real. If they are complex, the Poynting vec-
0,= Y[ X2 4+ )2 ] tor has no component in thg direction and the wave is
2= N -m ™ Fj-mb evanescent. In this case;, and a,, have negative imagi-
nary parts, as can be observed in E@s58 and(2.60 (de-
caying waves ay— — ). It can be seen thdi? is an un-

Therefore, the scattering problem is reduced to find the sdsnoOwn vector of (N+2—Po—Pe) elements1® is a vector
lutions of the systemg3.8) and (3.25 with appropriate  9iving the expansion&.77—(2.80. U is a matrix formed
boundary conditions at the interface between the two medid the diffracted amplitudes defined in Eq2.81—(2.84
Note that the first and second derivatives of the corrugatio@nd B? is an unknown vector formed by the amplitudes
function a(x) appear in the matrice®; andZ,. These de- Con @ndCe, of the ordinary and extraordinary propagating
rivatives are not defined if the grooves have abrupt cornervaves in the crystal. Thus, E(8.28 represents a system of
However, the method can also be applied to this kind o8N+4 equations with 8/+4 unknowns: N+2—2P in
profile by replacing the functioa(x) by its series expansion. D', 2P in BY, 4N+2—P,—P, in b? and P,+P, in B

As is shown in[1,6], the unknown vectog in Egs.(3.8)  Therefore the solution of this system gives the unknown am-
and(3.25 can be expanded in terms of the eigenvalues an@litudesR,, S, Con, andCey.

eigenvectors of the matrix, andZ,, respectively. That is to Note that Eq(3.28) is valid when the isotropic medium is
say, in each medium the vectgris written as a dielectric. For a metal it makes no sense to separate the

field into evanescent and propagating orders and only inci-

_ Lol ) dent waves from the uniaxial side are possible. In this case
f(v)_%: bgVgexp(ir v), (827 Eq.(3.29 is rewritten as

— 12

whereV!q (r'q) indicates they eigenvectofeigenvalugin the Trlnb#l: T2b2+ 12+ U%B2?, (3.29
mediuml| (I=1 isotropic and= 2 uniaxia) and b{q are un-

known complex amplitudes. Expansié®27) for the vector whereTX has now (8+4)X (4N+2) elements being the
& in each medium will be used to impose the boundary Con'eigenvenStors of the matriZ, which correspond to the
ditions at the interface. It is easy to demonstrate that in th AN+2) eigenvalues which lare real and positive or have
transformed space these conditions imply the continuity ot ~ .. ~7. . 1.

¢ at the interface. When the isotropic medium is adieIectric,po‘e’mve imaginary part and,, is an unknown vector of .
this is written as (8N+4) elements. The procedure to solve the problem is

equal to the one explained above.

Tibl+ 11+ UB=T?b%+ 12+ U?B?, (3.28
where the first term on the leftight) side of this equation IV. RESULTS
gives the evanescent field, the second the incident field, and |n this section we use the formalism presented above to
the third one the propagating field in the mediunt2L, re-  study polarization conversion from uniaxial gratings of sinu-
spectively. On the left hand side of this equati®h is a  soidal profile in the configurations similar to those already
(8N+4)X(4N+2—-2P) matrix whose columns are the considered in Ref$3,9] but extending the range of corruga-
eigenvectors of the matrixZ, associated with the tion strengths. Perfect agreement between the method based
AN+2—-2P eigenvaluesé having positive imaginary part, on the Rayleigh hypothesis and the formalism presented here
P being the number of propagating modes in the dielectriavas obtained for gratings with shallow grooves but discrep-
zone. These eigenvalues are the ones that correspond to deicies appear when the corrugation is increased. A detailed
caying waves ay— o (outgoing wave conditionb! is an  comparison between both methods, providing a way to check
unknown vector of (M+2—2P) elements. The vectot!  the validity of the Rayleigh hypothesis for anisotropic mate-
gives the expansions defined (.68 —(2.72. Note that this rials, will be reported elsewhere.
vector is null for a wave incident from the uniaxial side. For values ofh/d (groove height-to-period raticanging
U! is a matrix formed by the diffracted field expansionsbetween 0.1 and 0.5 energy conservation was required to
given by Egs.(2.73—(2.76 and B! is a vector (P ele- hold within a tolerance of 1% and in the examples below
mentg formed by the unknown®, and S, that give the this was usually achieved by retaining 11 ternh=(5) in
amplitudes of the diffracted fields in the isotropic medium. the expansions of the fields. By increasidrom 5 to 6 the

Analogously, on the right hand side we have the matrixpower carried by the specularly reflected and transmitted or-
T2 of (8N+4)X (4N+2—Po—Pe) elements. They are the ders varies within the same tolerance. As the groove height-
eigenvectors o¥, associated with theM-+2—Po—Peei-  to-period ratio is increased, the convergence of the results is
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FIG. 3. (a) Efficiency of the ordinary-to-ordinaryg0 zeroth re-
flected order as a function of the angle of incidengg for
0°<6,<10° and withh/d as a parameter. An ordinary wave is

the zeroth reflected order by a sinusoidal grating as a function of thiicident from sodium nitrate, =2.58, ¢/=1.71, andu,=1 into a

angle of incidence in the region of maximusmap conversion @,
between 57° and 64°) with/d as a parametdfor h/d between 0.1
and 1. An s wave is incident from the isotropic medium with
€,=3.5 andu;=1 into sodium nitrate withe, =2.58, ¢=1.71,
and w,=1. Other parameters are\y/d=1, ¢=0°,

802(0,0.688,0.725) (b) Efficiency of the cross-polarized compo-

metal with e;=—21.6+1.4 and wu,;=1. Other parameters are
No/d=0.7424,0=0°, andc,=(0.57,0.57,0.57)(b) Efficiency of
the extraordinary-to-extraordinam?, zeroth reflected order as a
function of the angle of incidencé, for 0°< 6,<10° and for dif-
ferent values oh/d. Other parameters are the same a&jn

nentr?, of the zeroth reflected order as a function of the angle ofof other orders that propagate into the crystal. However in
incidence in the region ag-p maximum conversion and for values the example presented there it was shown that the efficiency

of h/d greater than 0.5. Other parameters are the same @s. in

also obtained foN=5, but the error in the power conserva-

tion is of the order of 10°.

Next, we consider a sinusoidal boundary between a no
lossy isotropic medium ;=3.5 andu;=1) and sodium
nitrate (¢, =2.58, ¢y=1.71 andu,=1) illuminated from the
isotropic medium by ans wave. The optic axis is

60=0.68&A7+ 0.72&:’, a value that gives a maximusap con-
version for h/d=0. The wavelength-to-period ratifree
spacg was set to 1 and=0 (classical mounting In Fig.

of conversion in the specularly reflected order is not reduced
at least for weak corrugatiorisvith the same parameters as
in Fig. 2(@) but for A/d=0.5] and that the peaks are present
at exactly the same angles of incidence for which maximum

TConversion is observed whem/d is equal to zero

(0p=57.85°). In our example, we also observe that the effi-
ciency of the cross-polarized zeroth reflected order increases
as the value oh/d increases. Moreover, the peaks of con-
version appear at the same angle at which maximum conver-
sion takes place in a flat interface fbfd lower than 0.4,
approximately. For higher values bfd the angles of inci-

2(a) we show the efficiency of the cross-polarized compo-dence at which the maximum conversion occurs do not co-

nent in the zeroth reflected orderdf) as a function of the

incide with the disappearance of the zeroth transmitted or-

angle of incidencefor 6, between 57° and 64°) and for ders and the values of the cross-polarized efficiency are even
values ofh/d varying from 0.1 to 1, the step of variation higher than the ones observed fuofd varying from 0.1 to
being 0.1. For a flat interface, maximum conversion is ob-0.4, reaching a value of 0.837 &,=62.67° for h/d=1.
served at that angle of incidence where both transmittedhis can be observed in Fig(® where we plot the effi-

waves(ordinary and extraordinajypecome evanesce(ibtal
reflection. For the parameters chosen in Figa)2 this angle

ciency of the cross-polarized zeroth reflected order as a func-

tion of the angle of incidence (5% 60,<66°) for h/d be-

is #,=57.85° (the zeroth ordinary and extraordinary trans-tween 0.5 and 1, in steps of 0.05. In this example we have

mitted waves disappear #,=57.85° andd,=45.57°, re-
spectively. As pointed out i3], one may think that intro-

shown data for values df/d up to 1. For values oh/d

ranging between 0.1 and 0.5 power conservation is verified

ducing a corrugation to the boundary, the power reflected invith an error of 10°. As the groove height-to-period ratio
the zeroth reflected order would decrease due to the presenitereases this error also increases, being?for h/d equal
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(a)

efficiency
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¢ (deg)
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FIG. 4. (a) Absorbed power normalized to the incident power
AP for the same parameters considered(#).3b) Absorbed power ‘ . ‘ ‘ ‘ ‘ o :
normalized to the incident powexP for the same parameters con- ¢ 1020 30 40 50 60 70 80 90
sidered in 8). ¢ (deg)

. . . . FIG. 5. (a) Efficiency of the ordinary-to-ordinary and
to 1. Gratings with higher values bfd could be considered extraordinary-to-extraordinary zeroth reflected orde}, @ndr2,)

i _this error were reduced. We are Workiqg in overcomingas a function ofp. h/d=0.075 andg,=4.53° for the curve ,, or
this restriction by using a numerical technique based on th%e= 5.06° for the curve ... Other parameters are the same as Fig.

R-matrix propagqtion algori_thrff_s]. ) .. 4(a. (b) Efficiency of the cross-polarized zeroth reflected order
Next, we consider a grating illuminated from the uniaxial ;0 55 4 function ofe. The incident wave is ordinary,=4.53°

oe

side in a region where resonant excitation of surface plasangh/d=0.075. Other parameters are the same as Kaj. 4

mons is expected. We use a sinusoidal boundary between a

metal (gold at a wavelength of 800 nm with presence of minima in Figs(® and 3b) and of absorption
€,=—21.6+1.4 and u,;=1) and sodium nitrate peaks in Figs. @) and 4b) is associated with the excitation
(e,=2.58, ¢=1.71, and u,=1). Other parameters are of syrfacefplr:]:lsmons zla(t the inéerfaced.Fo:js_hallow gratin_gs tht(aj
3 _ _ position of these peaks can be predicted in an approximate
Co=(0.577,0.577,0.577)ho/d=1.7424, andp=0. The ef- way by an equation similar t2.53 wherea is the real part

of the complex pole of the determinant of the reflection ma-
trix for a plane interface.

In Fig. 5@ we plot the ordinary-to-ordinary and the
fextraordinary-to-extraordinary efficiencies of the zeroth re-
flected order as a function qf for the same gratings consid-
ered in Figs. &) and 3b). The angle of incidence and the
groove height-to-period ratio were selected from Figs) 3
and 3b) as the ones that minimize the quantitie,

shown in Fig. 3 where we plot the ordinary-to-ordinary
(r8,) and extraodinary-to-extraordinaryd) efficiencies in
the zeroth reflected ordefEigs. 3a) and 3b), respectively
as a function of the angle of incidence and for values o
h/d varying from 0.05 to 0.3, the step of variation being
0.05. In Fig. 3a) we observe a narrow minima in the region
4°<6,<4.6° forh/d between 0.05 and 0.15. When the po-
larization of the incident wave is extraordindfyig. 3b)], a . .
similar behavior is observed and the peaks rlegpear at anglé§°:4'_53 I’ h/dh: O'OZS) andrge (6e=5.06 hh/d=0.075),_ h
of incidence between 4.5° and 5.2°. respectively. The other parameters are t0 e same as in the
In Figs. 4a) and 4b) we plot the absorbed power normal- Previous figures. We observe the, and Fee ATE %trongly
ized to the incident powerdP) as a function of the angle of dependent on the value ¢f Whene=0°, r,, andr. have
incidence withh/d as a parameter for the same gratings contheir minimum valug0.138 forrg, and 0.244 for o). If we
sidered in Figs. @& and 3b), respectively. Both figures increase the value ap these quantities also increase reach-
show absorption peaks at approximately the same angldsg a maximum (3,=0.919 and r2,=0.927) when
where the minimum i, andr?, occurs. These peaks be- ¢=90°. In Fig. §b) we show the efficiency of the zeroth
come higher forh/d up to 0.075, approximately. For this extraordinary reflected orderJ,) as a function ofg. The
value of h/d the maximum absorbed power is 0.59 for anpolarization of the incident wave is ordinary and the angle of
ordinary incident wavéFig. 4@)] or 0.434 for an incident incidence is6,=4.53°. Other parameters are the same as
wave of the extraordinary tydéig. 4b)]. For greater values Fig. 5a). In this case, we observe that the efficiency de-
of the groove height-to-period ratio the peaks become lowecreases when the value of is increased, being?, lower
and disappear wheh/d is approximately equal to 0.3. The than 0.025 forp greater than 70° approximately.



2910 MARINA E. INCHAUSSANDAGUE AND RICARDO A. DEPINE 54

V. CONCLUSION where we have assumed a harmonic time dependence of the

Surface relief gratings with birefringent properties are Ofform exp(-iat), w being the frequency of the incident ra-
interest in communication techno|ogy and many other app||.d|at|0n Thel) 's are the contravariant and covariant vectors
cations in which we are interested in mechanisms that proand for this system are given by
vide means of switching information flow from one channel
to another. In this paper we explored the possibility of en-

hancing the conversion rate between polarization modes at a vl=X, v?=y-a'x, v3=%
single anisotropic interface by means of surface reliefs with
arbitrary profiles. To do so, we extended to the anisotropic
media a versatile rigorous method originally developed by N A . A . a
Chandezoret al. [6] for the diffraction gratings made of vi=x+a'y vy=Yy, v3=Z

isotropic materials. Whereas previous studies on the subject

were valid only for weak corrugations, our analysis has no

restriction on the surface relief profile. Furthermore, it can here;? 92 are the unit vectors in the original space and
handle gedneral configurations IE w?lch tf;e incident beafm 'Sa’ is the (;Ierivative ofa(u) with respect tau.

associated to waves coming either from the isotropic or from : .

the uniaxial side and anygorientations with resp%ct to the Analogously, Bq(2.7) is transformed into
grooves of the grating for the plane of incidence and for the

optical axis of the crystal. P

-1 -5 J -3 J - R -
v %-FU 5+U W(Huvl-i-vag—FHWUg)

(,OO > N N
ACKNOWLEDGMENTS = - €(Bwi+EvptEypy). (A2)
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dacin Antorchas, and UBA.

Expansion of Egs(Al) and (A2) leads to a system of six

equations with six unknownsg(, E,, E,, H,, H,, and

APPENDIX A H,,). Following the notation presented [ith] this system can
be written in matrix form as

In the new coordinate system, EQ.6) is written as[1]

cC O iw 0] T
[ } L ' G, (A3)
19 15 zi+*3i(E )1+ E, v+ Eyvs) ° ¢ ¢lmals O
1% U Y o0 v oW ul1 U2 wU3
_ 'i whereO is a matrix of zeros (¥ 3). The matrice<C and
= — pa(Hw1+H, v+ Hyos), (A1) T, are given by
i 9 —d J
aw ow dv
c i 0 9 ar? Ad
B oW u | (Ad)
a/i " [1+ar2] __a’i 0
| du au v i
|

1 00 [E,]

T=|a 1 0], (A5) S

Ew

0 0 1

Hy

Hv

andG is a vector formed by the unknowns of the problem | Hw,
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APPENDIX B €u,= (€= €,)CoxCoy , (B7)

As in the isotropic medium, in the uniaxial zone Eg.6)

is transformed into an expression of the fofAf) €uw= (€]~ €1)CoxCoz, (B8)

€,u=(€/—€,)[a'(ch,—ch)+(1—a’ HCouCoyl, (BY)

10 52l el (Eg1+E,vp+Eyvs)
v —tv—+vi— v WU v
Ju dv gw| 1 27w evvzel+(eH—el)(cgy—a’COXcoy), (B10)
i(J) - - > _ ’
:TO,Mz(Huvl‘i‘ Hyv,+Hyuvs), (B1) €,w= (€)= €,)Coz(—a’Coxt Coy), (B1))
€nu=(€/—€,)Co (A’ Coyt Coy), (B12)
where we have only changed, by u.. " I oy
By a similar procedure Eq2.7) is written as €wy = (€]~ €1)CoyCoz, (B13)
-0 -,0 L.0 - - - Eww=€, +(€—€,)C3 (B14)
U1%4‘025+U3(9—W}(Huvl+Huvz+HWU3) ww + I L7702

wherecy,, Coy, andcy, are the rectangular components of

lwg - - - - the optic axisC
=——(Dyw;+D,v,+D . B2 0-
¢ (Pw1tDyvo+Duvs) 2) Expressing the componenis,, D, andD,, in Eq. (B2)
o in terms ofE,, E, andE,,, Egs.(B1) and(B2) represent a
Taking into account Eq2.3), the component®,, D,, and  gystem of six equations with six unknowns which can be

D, are written in terms o, E,, andE,, as follows: express in matrix notation as
Dy= €uuEut €wEy+ €uwEw (B3) [c 0 iwg] O moTy (15
= G, B15
D, = €,uEut €50 By + €uEuys (B4) o ¢ c¢l-T2 O

D= €uuEut €us Byt €nEyy, (B5) where theC, O, T,;, andG have been defined before and

~ . €uu €uw €uw
wheree; ; are the elements of the tensoin the transformed , , ,
frame and are given by To=| A€t €y €T E, @ €T €.

€, €, €,
€uu= €.+ (€)= €.)(CR+2a' CoyCoy), (B6) i " " (B16)
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